При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов.

В заданиях, где нужно установить соответствие между двумя столбцами, ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца. Некоторые данные правого столбца могут использоваться несколько раз или не использоваться вообще. Например: A1Б1B4Г2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. Степень окисления –1 имеют атомы кислорода в соединении:

2. Укажите формулу органического вещества:

3. К классу альдегидов относится вещество, название которого:

4. Используя в качестве реагента только разбавленную серную кислоту, в одну стадию можно осуществить превращение:

1)
$$Cu(NO_3)_2 \longrightarrow CuSO_4$$
 2) $Cu \longrightarrow CuSO_4$ 3) $Pb(NO_3)_2 \longrightarrow PbSO_4$ 4) $NH_4Cl \longrightarrow (NH_4)_2SO_4$

5. Ковалентные связи содержатся во всех веществах ряда:

$$1)\ K_2O, CaBr_2, Au \qquad 2)\ NH_4Cl, Mg, HCl \qquad 3)\ CCl_4, H_3PO_4, H_2S \qquad 4)\ CO_2, Cl_2, KBr_2Cl_4, H_3PO_4, H_2S \qquad 4)\ CO_2, Cl_2, KBr_2Cl_4, H_3PO_4, H_2S \qquad 4)\ CO_2, Cl_2, KBr_2Cl_4, H_3PO_4, H_2S \qquad 4)\ CO_3, Cl_3, KBr_2Cl_4, H_3PO_4, H$$

6. Полимер, имеющий строение образуется из мономера:

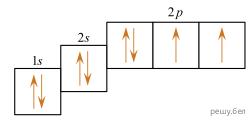
$$C = C$$

$$CH_2$$

$$CH_{3.6}$$

1)
$$CH_2 = CH^-CH_3$$
 2) $CH_2 = C(CH_3)^-CH_2^-CH_3$ 3) $CH_3^-CH = CH^-CH_3$ 4) $CH_2 = CH^-CH = CH_2$

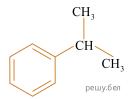
7. Исходные концентрации веществ A и B, участвующих в одностадийной реакции A + B = C, равны соответственно 2,45 моль/дм³ и 1,94 моль/дм³. Через 48 с после начала реакции концентрация вещества A снизилась до 1,37 моль/дм³. Средняя скорость (моль/дм³ · c) данной реакции и концентрация вещества B (моль/дм³) через 48 с после начала реакции равны соответственно:


8. К классу спиртов относится основной органический продукт превращений:

$$C_2H_5Cl + NaOH \xrightarrow{H_2O, t}$$
 $C_2H_2 + H_2O \xrightarrow{H^+/Hg^{2+}}$ $CH_3CHO + H_2 \xrightarrow{Ni, t, p}$ $CH_3COOH + NaOH \xrightarrow{pemy.60}$ 1) 2) 3)

1)
$$a_{,B}$$
 2) $a_{,\Gamma}$ 3) $\delta_{,B}$ 4) $\delta_{,\Gamma}$

9. Дана электронно-графическая схема атома химического элемента в основном состоянии:


Его относительная атомная масса равна:

- 10. Водный раствор гидроксида бария реагирует с каждым веществом в ряду:
 - 1) NaHCO₃, Zn(OH)₂, Na₂SO₄; 2) K₂SO₄, CuO, FeCl₂; 3) NaNO₃, Mg(OH)₂, FeCl₃; 4) CO₂, Mn₂O₇, Cu.
- 11. В порядке увеличения температур кипения вещества расположены в ряду:
 - 1) бутан, этанол, ацетилен, бутанол-1
- 2) ацетилен, этанол, бутан, бутанол-1
- 3) ацетилен, бутан, этанол, бутанол-1
- 4) ацетилен, бутан, бутанол-1, этанол
- **12.** Минеральное удобрение, формула которого NaNO₃, имеет название:

13. В отличие от пентана вещество, формула которого представлена на рисунке:

- 1) вступает в реакции окисления; 2) является гомологом толуола;
- 3) является изомером нонана; 4) оответствует общей формуле $C_n H_{2n+6}$. 5) содержит в молекуле 12 атомов водорода.
- 14. Исходное октановое число бензина, равное 100, можно увеличить добавлением:
- 1) октана; 2) гексана; 3) 2,2,4-триметилпентана; 4) нонана; 5) 1,4-диметилбензола.
- 15. Амин, структурная формула которого представлена на рисунке:

- а является первичным
- б является вторичным
- в окрашивает водный раствор лакмуса в синий цвет
- г имеет название диметиламин

16. При промышленном получении серной кислоты присутствие катализатора необходимо на стадии:

1)
$$S \xrightarrow{O_2} SO_2$$
 2) $SO_3 \xrightarrow{H_2O} H_2SO_4$ 3) $Cu_2S \xrightarrow{O_2} CuO + SO_2$
4) $SO_2 \xrightarrow{O_2} SO_3$ 5) $H_2S \xrightarrow{O_2} H_2O + SO_2$

- 17. Простое вещество А в обычных условиях имеет твердое агрегатное состояние и черный цвет. Его атомы входят в состав всех органических веществ. При сжигании А в избытке кислорода получили газообразное (н. у.) вещество Б. Избыток Б пропустили через известковую воду. Выпавший первоначально осадок В растворился, и образовался раствор вещества Г, которое обусловливает временную жесткость воды. При нагревании Г образуется несколько продуктов, среди которых газ Б и бесцветная жидкость Д. Найдите сумму молярных масс (г/моль) веществ В и Д.
- **18.** Найдите сумму коэффициентов перед формулами селена и воды в уравнении реакции, схема которой

$$H_2Se + K_2Cr_2O_7 + H_2SO_4 \longrightarrow Cr_2(SO_4)_3 + Se + K_2SO_4 + H_2O.$$

- **19.** В четырех пронумерованных пробирках находятся растворы неорганических веществ. О них известно следующее:
 - вещества из пробирок № 1 и № 4 нейтрализуют друг друга;
- вещества из пробирок № 2 и № 4 реагируют между собой с образованием осадка, который на воздухе приобретает бурую окраску;
 - при электролизе расплава вещества из пробирки № 3 одним из продуктов является газ (н. у.).

Установите соответствие между названием неорганического вещества и номером пробирки, в которой находится раствор данного вещества.

НАЗВАНИЕ ВЕЩЕСТВА	№ ПРОБИРКИ
А) хлорид натрия	1
Б) фосфорная кислота	2
В) гидроксид калия	3
Г) сульфат железа(II)	4

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б4B2Г3.

- **20.** К раствору сульфата меди(II) массой $300 \, \mathrm{r}$ с массовой долей $\mathrm{CuSO}_4 \, 8\%$ добавили медный купорос массой $80 \, \mathrm{r}$ и перемешали смесь до полного его растворения. Рассчитайте массовую долю (%) соли в полученном растворе.
- 21. Определите сумму коэффициентов перед формулами продукта окисления и продукта восстановления в уравнении химической реакции, схема которой

$$CrCl_3 + Cl_2 + KOH \longrightarrow K_2CrO_4 + KCl + H_2O$$

22. Определите сумму коэффициентов перед формулами продукта окисления и продукта восстановления в уравнении химической реакции, схема которой

$$\mathbf{CaI}_2 + \mathbf{H}_2\mathbf{SO}_4 \longrightarrow \mathbf{CaSO}_4 + \mathbf{I}_2 + \mathbf{H}_2\mathbf{S} + \mathbf{H}_2\mathbf{O}.$$

23. Дана схема превращений

$$\begin{array}{c} \text{CH}_{4} \xrightarrow{1500\,^{\circ}\text{C}} \times \text{X}_{1} \xrightarrow{\text{C (акт.)}, \, t} \times \text{X}_{2} \text{(1 моль)} \xrightarrow{\text{1 моль HNO}_{3} \text{(конц.)} / \text{H}_{2}\text{SO}_{4} \text{ (конц.)}, \, t} \\ \longrightarrow \text{X}_{3} \xrightarrow{\text{Fe}/\text{HBr (изб.)}} \times \text{X}_{4} \xrightarrow{\text{KOH}} \text{X}_{5}. \end{array}$$
 решу.бел

Определите сумму молярных масс (г/моль) органических веществ X_4 и X_5 .

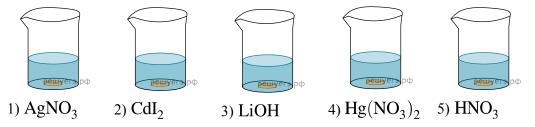
24. Дан перечень неорганических веществ: аммиачная селитра, графит, гидроксид магния, гидросульфит калия, кремнезем, оксид фосфора(V), фтор, хлорид меди(II). Укажите число высших оксидов, нерастворимых оснований, солей и простых веществ соответственно.

Ответ запишите цифрами, соблюдая полученную последовательность, например: 1322.

25. Установите соответствие между схемой химической реакции, протекающей в водном растворе, и суммой коэффициентов в сокращенном ионном уравнении реакции.

СХЕМА РЕАКЦИИ	Сумма коэффициентов
A) Fe + HCl \longrightarrow	1) 3
$_{\rm D}$ ${\rm Al_2O_3+KOH}$ (изб.) $+{\rm H_2O}$ \longrightarrow	2) 4 3) 5
B) $Mg + CH_3COOH \rightarrow$	4) 6
Γ Zn + CuSO ₄ \longrightarrow	5) 7 6) 12

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б3В5Г1.


- **26.** В четырех пронумерованных пробирках находятся растворы неорганических веществ. О них известно следующее:
- вещества из пробирок 1 и 4 нейтрализуют друг друга, способны растворять алюминий, его оксид и гидроксид;
- содержимое пробирки 3 имеет голубую окраску и реагирует с веществом из пробирки 4 с образованием голубого осадка;
- вещества из пробирок 1 и 2 реагируют между собой с образованием белого студенистого осад-ка.

Установите соответствие между содержимым пробирки и ее номером.

СОДЕРЖИМОЕ ПРОБИРКИ	№ ПРОБИРКИ
A) нитрат меди(II)	1
Б) гидроксид калия	2
В) соляная кислота	3
Г) силикат натрия	4

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б1B3Г4.

- **27.** В смеси, состоящей из пропиламина, бутана и этана, массовые доли водорода и азота равны 16,4% и 15,8% соответственно. Вычислите максимальную массу (г) такой смеси, которую можно окислить газовой смесью массой 240 г, состоящей из озона и кислорода. Продуктами реакции являются только CO_2 , H_2O и N_2 .
- **28.** Дан перечень неорганических веществ: негашеная известь, оксид фосфора(V), оксид серы(VI), сернистый газ, оксид лития. Определите число веществ, которые могут реагировать с водой при комнатной температуре
- 29. В каждый из пяти стаканов, наполненных разбавленными водными растворами, поместили по одной медной монете.

Определите число стаканов, в которых масса монеты НЕ изменилась.

30. В результате полного сгорания в избытке кислорода простого вещества А (образовано химическим элементом, который входит в состав всех органических соединений) образуется бесцветный газ Б. После пропускания избытка Б через известковую воду получается растворимая соль В. Нагревание В приводит к образованию газа Б и белого осадка соли Г. Продуктами взаимодействия Г с водным раствором галогеноводорода, относительная плотность которого по неону равна 1,825, являются газ Б и раствор соли Д. Установите соответствие между веществом, обозначенным буквой, и его молярной массой (г/моль).

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A2Б1В4Г3Д5.

- **31.** Дан перечень соединений: SO_3 , Al_2O_3 , H_2O , HI, CH_3COOH . Определите число соединений, которые могут реагировать с оксидом натрия.
- **32.** Определите сумму молярных масс (г/моль) серосодержащих веществ Б, Е и алюминий содержащего вещества Д, полученных в результате превращений (Б является кислой солью)

NaCl
$$\xrightarrow{\text{H}_2\text{SO}_4(\text{конц.})}$$
 A $\xrightarrow{\text{Al}}$ B (1 моль) $\xrightarrow{\text{3 моль NaOH (p-p)}}$ Д $\xrightarrow{\text{Б}}$ $\xrightarrow{\text{NH}_3 (p-p, изб)}$ Γ $\xrightarrow{\text{Ba(OH)}_2 (p-p, изб)}$ Γ

- **33.** Для повышения устойчивости озон разбавили неоном. Полученная смесь объемом (н. у.) 42 дм 3 имеет плотность 1,24 г/дм 3 . Рассчитайте максимальный объем (н. у., дм 3) этана, который можно полностью окислить данной смесью.
- **34.** Для корректировки дефицита железа в корм цыпленка бройлера добавляют кристаллогидрат соли железа в расчете 82 мг металла на 1 кг корма. Массовые доли химических элементов в кристаллогидрате составляют: $\omega(\text{Fe}) = 20,14\%,\ \omega(S) = 11,51\%,\ \omega(O) = 63,31\%,\ \omega(H) = 5,04\%.$ Вычислите массу (мг) кристаллогидрата в 300 г корма.
 - 35. Расположите водные растворы веществ в порядке уменьшения их рН:
 - 1) $0.5 \text{ моль/дм}^3 \text{ Na}_2 \text{SO}_4$
 - 2) 0,5 моль/дм $^3 H_2 SO_4$
 - 3) 0,5 моль/дм³ CH₃COOH
 - 4) 0,5 моль/дм³ HNO₃
- **36.** Установите соответствие между обратимой реакцией и направлением смещения равновесия в результате повышения давления.

А)
$$2\mathrm{NO}_{2(\Gamma)} \rightleftarrows \mathrm{N}_2\mathrm{O}_{4(\Gamma)} + Q$$
 1) влево 2) вправо 3) НЕ смещается В) $2\mathrm{NOCl}_{(\Gamma)} \rightleftarrows 2\mathrm{NO}_{(\Gamma)} + \mathrm{Cl}_{2(\Gamma)} - Q$ Г) $\mathrm{H}_2\mathrm{S}_{(\Gamma)} \rightleftarrows \mathrm{H}_{2(\Gamma)} + \mathrm{S}_{(\mathbb{K})} - Q$

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б2B3Г3.

37. Установите соответствие между парой веществ и реагентом, позволяющим обнаружить каждое вещество пары. Все реакции протекают в разбавленном водном растворе.

Ответ запишите в виде сочетания букв и цифр, соблюдая алфавитную последовательность букв левого столбца, например: A1Б2B4Г3.

38. Определите сумму молярных масс (Γ /моль) кальцийсодержащих веществ Б и Γ , полученных в результате превращений:

$$\mathrm{Ca}(\mathrm{OH})_2 \xrightarrow{\mathrm{t}^\circ} \mathrm{A} \xrightarrow{\mathrm{CO}_2 \ (изб.)/H_2\mathrm{O}} \mathrm{B} \xrightarrow{\mathrm{HI}} \mathrm{B} \xrightarrow{\mathrm{KF}} \Gamma.$$